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ABSTRACT
Epstein-Barr virus (EBV) is a ubiquitous human virus 
which infects almost all humans during their lifetime and 
following the acute phase, persists for the remainder 
of the life of the individual. EBV infects B lymphocytes 
leading to their immortalisation, with persistence of the 
EBV genome as an episome. In the latent phase, EBV is 
prevented from reactivating through efficient cytotoxic 
cellular immunity. EBV reactivates (lytic phase) under 
conditions of psychological stress with consequent 
weakening of cellular immunity, and EBV reactivation 
has been shown to occur in a subset of individuals with 
each of a variety of cancers, autoimmune diseases, the 
autoimmune-like disease, chronic fatigue syndrome/
myalgic encephalitis and under other circumstances 
such as being an inpatient in an intensive care unit. 
Chronic EBV reactivation is an important mechanism 
in the pathogenesis of many such diseases, yet is rarely 
tested for in immunocompetent individuals. This review 
summarises the pathogenesis of EBV infection, EBV 
reactivation and its role in disease, and methods which 
may be used to detect it. Known inhibitors of EBV 
reactivation and replication are discussed, including 
drugs licensed for treatment of other herpesviruses, 
licensed or experimental drugs for various other 
indications, compounds at an early stage of drug 
development and nutritional constituents such as 
vitamins and dietary supplements.

Introduction
Epstein-Barr virus (EBV) is a ubiquitous human 
virus which infects almost all humans during their 
lifetime and persists for the remainder of the life 
of the individual. EBV reactivates under psycholog-
ical stress, and EBV reactivation has been shown 
to occur in a subset of individuals with each of a 
variety of autoimmune diseases and cancers. It 
is recognised that chronic EBV reactivation is an 
important mechanism in the pathogenesis of these 
diseases. Yet EBV reactivation is rarely suspected in 
clinical practice, is rarely tested for in immunocom-
petent individuals and, even if identified, there are 
no licensed treatments. In this review, the impor-
tance of EBV reactivation will be considered in 
the pathogenesis of disease in general, along with 
diagnostic approaches and therapeutic inhibitors, 
including drugs, vitamins and supplements.

EBV infection
EBV is a hugely successful virus which maintains a 
global infection rate in humans of 95% and persists 
lifelong in individuals following the acute phase of 
infection.1 In immunocompetent individuals, this 

persistence is not associated with clinical symptoms. 
Primary EBV infection is usually asymptomatic 
and for many occurs during childhood, but when 
it occurs in adolescence or adulthood, 30%–50% 
cases manifest clinically as infectious mononu-
cleosis (IM).2 Primary and secondary immunode-
ficiency facilitates virus reactivation, unchecked 
proliferation of EBV-infected B lymphocytes and 
eventual development of EBV+ B lymphoprolifer-
ative disease.1 3–6 EBV infection of T cells/natural 
killer (NK) cells may result in haemophagocytic 
lymphohistiocytosis,7 chronic active EBV infec-
tion8 and T-cell/NK-cell lymphomas,9 which tend 
to be aggressive in presentation. EBV also causes 
Burkitt lymphoma (BL), nasopharyngeal carci-
noma (NPC), gastric adenocarcinoma, AIDS-asso-
ciated lymphoblastic and primary central nervous 
system lymphoma, post-transplant lymphoprolifer-
ative disease (PTLD), nasal T-cell/NK lymphoma, 
Hodgkin’s disease, lymphoepithelioma-like carci-
noma and leiomyosarcoma.2 10 11 Altered immune 
responses to EBV have been documented in a wide 
variety of autoimmune diseases, including multiple 
sclerosis (MS), Sjogren’s syndrome (SS), systemic 
lupus erythematosus (SLE), rheumatoid arthritis 
(RA), inflammatory bowel disease (IBD) and type 1 
diabetes mellitus (T1DM). EBV infection has been 
associated with a higher risk of developing autoim-
mune disease, particularly MS, dermatomyositis, 
SLE, RA and SS.12

EBV is a gamma-herpesvirus, containing double-
stranded linear DNA of 170–175 kb, which is 
transmitted mainly by salivary transfer of EBV-in-
fected B cells, but also by aerosol.2 10 Although it 
is generally accepted that early subclinical infec-
tion is predominant in developing countries, 80% 
Japanese children have acquired the virus by the 
age of 3.1 In the oropharynx, the virus infects B 
cells via the C3d complement receptor, CD21.10 
It has been shown that the epithelial lining of 
the oropharynx is discontinuous allowing the 
virus direct access to the underlying B cells of the 
tonsils. EBV infection of B lymphocytes in vitro 
leads to the production of immortalised lympho-
blastoid cell lines exhibiting restricted cellular and 
EBV gene expression.13 After the initial replicative 
(lytic) phase of infection, the EBV genome circu-
larises to be maintained as a multicopy plasmid 
in the B cell nucleus. In almost all EBV-infected 
B cells, the virus infection exists in a latent state, 
with the capacity for cellular immortalisation. In 
vivo, latent EBV+ B cells include immunoblastic 
B cells, memory B cells and resting non-immu-
nogenic B cells. Immunoblastic B cells are highly 
immunogenic and are rapidly removed during IM. 

http://www.pathologists.org.uk/
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Resting non-immunogenic B cells are the latent virus reservoir 
in the circulation of healthy carriers.1

IM is the primary virus infection which occurs in EBV sero-
negative persons; 80% or more cases of acute IM are due to 
primary EBV infection. IM symptoms include fever, tender 
lymphadenopathy, sore throat, hepatosplenomegaly and skin 
rash. Symptoms characteristic of EBV-associated IM, as opposed 
to IM due to infection with cytomegalovirus (CMV) or varicel-
la-zoster virus (VZV), are puffy eyelids and tonsillar exudates.1 
Young children more frequently have skin rash and abdom-
inal pain. By the end of the incubation period (2 to 7 weeks 
post-transmission), EBV has spread to infect approximately 
20% B cells in infected adolescents and young adults with acute 
IM.2 The proliferation of EBV-infected B lymphocytes is rapidly 
inhibited during the first 2 weeks by a strong cellular immune 
response. This was previously believed to be composed of only 
NK cells, interferon-γ (IFN-γ)-activated CD8+ T cells and anti-
body-dependent cellular cytotoxicity.14 Activated CD8+ T cells 
(morphologically seen as atypical lymphocytes) may reach 60% 
peripheral blood mononuclear cells (PBMCs) during the symp-
tomatic phase of acute IM.15 T lymphocytes specific for EBV 
lytic phase epitopes have been shown to account for up to 44% 
of total CD8+ T lymphocytes, in comparison with 1%–2% 
accounted for by CD8+ T lymphocytes specific for the immuno-
dominant EBV proteins, Epstein-Barr nuclear antigens EBNA3, 
EBNA4 and EBNA6.16 17

More recently, the importance of polyfunctional T cells 
(PFCs) in control of EBV has been recognised. EBV-specific PFC 
in long-term carriers produce more cytokines per cell than the 
single functional T cells and may be functionally superior.18 19 
It has been shown that CD4+ and CD8+ PFC responses occur 
against immunodominant latent and lytic EBV epitopes during 
primary EBV infection in children.20 PFCs have multiple func-
tions, such as simultaneous production of multiple cytokines, for 
example, interleukin 2, IFN-γ and tumour necrosis factor α, and 
degranulation of cytotoxic proteins. PFC appear to be associ-
ated with more effective control of chronic microbial infections 
including HIV, hepatitis C virus (HCV) and CMV.21–25 Frequen-
cies of occurrence of PFC were higher in HIV non-progressors 
than in progressors.26 It has recently been shown that polyfunc-
tional and IFN-γ monofunctional CD4+ T cells are molecularly 
distinct and the polyfunctional gene signatures in response to 
infection with Plasmodium falciparum and influenza virus are 
highly conserved.27 Therefore, PFC appear to contribute to 
more robust T-cell immunity in control of virus infections. But 
how they arise and evolve during primary EBV infection and 
their role in long-term control of EBV remains unknown.

During the symptomatic phase, 103–4 copies of EBV DNA can 
be detected in PBMC or serum.28 29 Occurrence and progres-
sion of EBV-specific antibodies are used for the diagnosis of 
acute EBV infection. The cellular immune response reduces the 
number of circulating EBV-infected B cells to 1 in 106 B cells 
within 4–6 weeks.1

Pathogenesis of EBV infection
Latent phase of infection
EBV infection of B lymphocytes may exhibit a latent or lytic 
phase of infection. In the latent phase of infection, the EBV 
genomic DNA exists as a closed circular plasmid and behaves 
like host chromosomal DNA. EBV latency in B cells is asso-
ciated with the expression of at most 12 latent genes. EBV 
infects naive B lymphocytes and stimulates differentiation to 
memory B cells, which are the reservoir of EBV. Coordinated 

EBV protein expression facilitates this process, especially latent 
membrane proteins (LMP1, LMP2A, LMP2B) and EBV nuclear 
antigens (EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C). 
Three different latency patterns are recognised depending on 
the pattern of protein expression, each of which is associated 
with a different stage of B-cell infection and with particular 
lymphoproliferative disorders. Latency III is the most elaborate 
viral expression pattern (EBER1, EBER2, EBNA1–6, LMP1, 
LPM2A, LMP2B) and is associated with EBV+ post-transplant 
diffuse large B-cell lymphoma (PT-DLBCL). Latency II is more 
restricted in its protein expression (EBER1, EBER2, EBNA1, 
LMP1, LMP2A) and is associated with PT-DLBCL and Hodgkin 
lymphoma. Latency I is the most restrictive latency programme 
(expression of only EBER1, EBER2, EBNA1) and is associated 
with post-transplant BL.30–32

Lytic phase of infection
During lytic infection (EBV replication), on the other hand, the 
EBV genome is amplified up to 1000-fold by the viral replication 
machinery. The lytic phase is also associated with the expression 
of nearly 100 EBV genes. The lytic programme arrests cell cycle 
progression and favours the S-phase which provides the cellular 
machinery necessary for viral replication.33 The expression of 
the immediate early proteins, Zta and Rta (encoded by BZLF1 
and BRLF1, respectively), initiate the EBV lytic phase of infec-
tion.34–36 Zta and Rta activate the expression of one another and 
trigger the expression of a panel of early lytic proteins (BMRF1, 
BALF1, BHRF1 and others). Thus, viral DNA replication and 
later, expression of late lytic proteins are initiated by the imme-
diate early and early EBV lytic proteins.37 In the complete lytic 
cycle, viral DNA is replicated as large, complete molecules which 
are later cleaved and packaged into viral progeny which are 
released to infect neighbouring cells.33

EBV reactivation has been shown to occur following impair-
ment of the cellular immune response caused by psychological 
stress of various types, including student examination stress,38 39 
marital stress,40 attachment anxiety or fear of abandonment and 
rejection,41 and loneliness.42 EBV reactivation has also been 
shown to occur with greater than 5 to 7 days spent as a patient 
in intensive care,43 44 which is well recognised to be associated 
with psychological stress. Physical stress by itself does not have 
this effect.45 EBV reactivation is paralleled by changes in a large 
variety of immune markers of cellular immunity which are 
important in the long-term control and suppression of replication 
of persistent and asymptomatic EBV in the normal person.46 47 
EBV reactivation has been shown to occur in a variety of chronic 
autoimmune diseases, including SLE, SS, RA, MS48 and chronic 
fatigue syndrome/myalgic encephalomyelitis (CFS/ME).49 50

Chronic uncontrolled EBV reactivation has been shown to be 
an important factor in the pathogenesis of NPC51 and PTLD.52 
It has been shown that an NPC-associated BZLF1 variant is asso-
ciated with the enhancement of lytic EBV infection.53 PTLD has 
also been shown to be associated with detectable circulating EBV 
genome and ZEBRA, the gene product of BZLF1.54

Indirect evidence for EBV reactivation is provided by the 
upregulation of the human EBV-induced 2 (EBI2) gene, which 
is the most upregulated human gene in EBV-infected BL cells.55 
EBI2 upregulation has been demonstrated in melanoma metas-
tasis, lymphoblastic leukaemia, glioblastoma, bone cancer metas-
tasis, SLE, chronic rhinosinusitis with nasal polyps, T1DM56 
and CFS/ME.57 EBI2 is a human G-protein coupled receptor 
(GPCR) which is activated by oxysterols and pertussis toxin-sen-
sitive heterotrimeric G proteins, resulting in decreased cyclic 
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AMP, mobilisation of calcium and activation of the extracel-
lular signal-related kinase (ERK) pathway.56 58 The oxysterol, 
7α,25-dihydroxycholesterol (7α25HC) is a high-affinity EBI2 
agonist.59 60 Aberrant oxysterol signalling has been demonstrated 
in MS, experimental allergic encephalomyelitis Alzheimer’s 
disease, Parkinson’s disease, motor neuron disease, cerebro-
tendinous xanthomatosis, hereditary spastic paraplegia type 5, 
Huntington disease, age-related macular degeneration, athero-
sclerosis, IBD and osteoporosis.56

EBV reactivation may be identified in individuals by detection 
of IgA antibody to EBV early antigen (EA), neutralising IgG to 
EBV DNA polymerase and EBV dUTPase,49 61 IFN-γ release from 
T lymphocytes (ELISpot assay) against EBV latent and lytic viral 
proteins, circulating EBV genome, and EBI2 gene and protein 
expression.56

Oral hairy leucoplakia (OHL) as a model of EBV reactivation
Although circulating resting memory B lymphocytes are believed 
to be the reservoir of latent EBV,62 63 EBV can replicate in human 
oral epithelial cells64–66 and EBV may be detected in oral tissue 
as a latent infection.67 68 OHL is a benign oral epithelial disease 
presenting as white patches which is associated with active EBV 
infection of oral epithelial cells which is frequently seen in HIV 
infection, IM and with psychological stress.69 Treatment of this 
condition with drugs that inhibit EBV replication leads to reso-
lution without eradication of latent infection.67 Therefore, OHL 
has been used as a model for EBV reactivation, factors involved 
and potential therapeutics.

Therapeutic oncolytic therapy for EBV-associated neoplasia
While EBV reactivation is an important causative mechanism of 
disease for many patients, it also represents a potentially effec-
tive therapeutic intervention for others. Deliberate reactivation 
of the EBV lytic cycle is a therapeutic strategy that exploits the 
presence of EBV genome in cancer cells. Induction of EBV lytic 
cycle can directly induce apoptotic cell death in EBV-infected 
cell lines.70–73 And it has been demonstrated that EBV reactiva-
tion using tetradecanoyl phorbol acetate results in chromosomal 
DNA fragmentation in Raji BL cells.70 Such oncolytic therapy 
has been used to sensitise EBV+ cancer cells to anti-EBV drugs 
and is a potential therapeutic strategy.

Although no drug has been licensed for the treatment of EBV 
infection, there are a variety of antiviral and other drugs, as well 
as vitamins and plant extracts which effectively inhibit EBV repli-
cation (table 1 and figure 1). In each case, the anti-EBV activity is 
directed toward the prevention of replication, and none has any 
effect on the latent phase of infection.

Anti-herpesvirus drugs
Aciclovir is a nucleoside analogue approved for the treatment 
of herpes simplex virus (HSV) and VZV infections. The anti-
viral effect of aciclovir is mediated by the interaction of aciclovir 
triphosphate with herpesvirus DNA polymerase with much 
higher affinity than for cellular polymerases. Aciclovir triphos-
phate is incorporated into the viral DNA where it irreversibly 
stops chain elongation. Anti-EBV activity of acyclovir is signifi-
cantly less than its activity against HSV and VZV. Aciclovir is not 
clinically useful in EBV-associated IM, but it has been shown to 
reduce EBV shedding.74

Ganciclovir (dihydroxypropoxymethyl guanine) exhibits 
greater anti-EBV activity than aciclovir, but it is much more toxic 
which makes its use in otherwise normal persons more difficult 
to justify.74 Valganciclovir is the L-valyl ester of ganciclovir which 

is metabolised to ganciclovir by the intestine and liver following 
oral administration. Valganciclovir is licensed for the treatment 
of CMV disease and has been shown to significantly reduce the 
level and duration of EBV shedding in IM in a randomised, 
double-blind, placebo-controlled study.75

Omaciclovir (H2G) is a carbocyclic analogue of aciclovir 
which is active against several herpesviruses and has good 
anti-EBV activity.76 Valomaciclovir is an L-valine ester of H2G, 
with higher oral bioavailability. Valomaciclovir was the subject 
of a clinical trial in IM and was shown to mediate faster clin-
ical improvement than placebo recipients, although the effect 
was not statistically significant. Valomaciclovir significantly 
decreased EBV load in the mouth, compared with placebo (​Clin-
icalTrials.​gov trial: NCT00575185).

Maribavir (MBV) is an investigational oral benzimidazole L-ri-
boside with significant activity against CMV and EBV, mediated 
by an effect on the protein kinases. MBV inhibits EBV through 
a unique dual effect of inhibition of viral DNA replication and 
viral transcription.77

Cidofovir ((S)−1-(3-hydroxy-2-phosphonylmethoxypropyl)
cytosine) is a nucleoside analogue which has been used for the 
treatment of human papillomavirus-associated lesions.78 Cido-
fovir has been shown to have an antiproliferative effect although 
the mechanism of this is not understood. Cidofovir has also been 
shown to inhibit the growth of EBV+ NPC xenografts in nude 
mice.79 80

Other drugs with anti-EBV activity
Cimetidine was the first H2 antagonist and has multiple anti-
cancer activities including antiproliferative activity on cancer 
cells, immunomodulatory effects, effects on cell adhesion and 
antiangiogenic activity. Histamine is associated with an immu-
nosuppressive tumour microenvironment through an increase in 
CD4+CD25+ regulatory T cell activity, reduced antigen-pre-
senting activity of dendritic cells (DCs), reduced NK cell activity 
and increased myeloid-derived suppressor cell activity.81 82 
Cimetidine therapy has been reported anecdotally to benefit 
patients with chronic EBV reactivation,83 84 although this has 
not been studied formally in clinical trials. Possible mechanisms 
include inhibition of the T helper suppressor cell, resulting in 
potentiation of cytotoxicity of CD8+ T cells, and antiprolifera-
tive activity.81 82 85

Antiretroviral drugs have been reported, in several reports, 
to induce prolonged remission in MS.86–88 These patients were 
taking zidovudine and lamivudine,86 efavirenz/emtricitabine/
tenofovir-disoproxil fumarate (ATRIPLA)87 and emtricitabine/
tenofovir and nelfinavir.88 3'-Azido-3'-deoxythymidine (Zidovu-
dine) was shown to inhibit EBV replication in vitro in P3HR-1 
cells.89 L(-)FMAU (Clevudine), L(-)I-OddC and Br(-)Br-OddU 
have also been shown to exhibit anti-EBV replication activity.90

Valpromide is an amide derivative of valproic acid, which 
unlike valproic acid, inhibits the expression of BRLF1 and 
BZLF1 and is not a histone deacetylase (HDAC) inhibitor and so 
does not induce the expression of cellular genes.91 Valpromide 
did not activate, and even decreased, the expression of cellular 
immediate-early genes, FOS and EGR1, which during EBV infec-
tion occurs upstream of the EBV lytic cycle. Valpromide does 
not alter the expression of several other cellular immediate-early 
genes which are induced by HDAC inhibitors in cells refractory 
to EBV lytic induction. Therefore, valpromide inhibits both viral 
and cellular genes involved in EBV lytic infection.91

Bromodomain and extraterminal family members block two 
different steps in the sequential cascade of the lytic EBV cycle. 
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Table 1  Therapeutic inhibitors of EBV reactivation and replication

Inhibitor of EBV reactivation Mechanism of action References

Anti-herpesvirus drugs

 � Aciclovir Aciclovir triphosphate is a specific inhibitor of herpesvirus DNA polymerase leading to obligate chain termination. 74

 � Ganciclovir/valganciclovir Preferential inhibitor of herpesvirus DNA polymerase and competitive inhibitor of dGTP incorporation into DNA. 75

 � Omaciclovir (H2G)/valomaciclovir H2G triphosphate is a specific inhibitor of herpesvirus DNA polymerase leading to limited chain elongation. 76

 � Maribavir Oral benzimidazole L-riboside which inhibits HCMV and EBV protein kinases. 77

 � Cidofovir Cidofovir diphosphate selectively inhibits viral DNA polymerase. 78–80

Other drugs

 � Cimetidine H2 antagonist, inhibition of T suppressor cells, cellular proliferation, adhesion and angiogenesis. 81–85

 � Zidovudine Thymidine analogue which selectively inhibits HIV reverse transcriptase. Anti-EBV effect not proven nor elucidated. 86–88 90

 � Clevudine Clevudine triphosphate inhibits multiple steps in the intracellular life cycle of hepatitis B virus. Anti-EBV effect not 
proven nor elucidated.

86–89

 � Valpromide Prevention of expression of immediate-early EBV genes, BZLF1 and BRLF1. 91

 � JQ1, and bromodomain and 
extraterminal

JQ1 inhibits the growth of EBV+ nasopharyngeal cancer cells; proapoptotic, antiproliferative and enhancement of 
radiological sensitivity.

92 93

 � Artesunate Inhibition of immediate-early EBV protein synthesis. 94 95

 � H31 sequence-specific inhibitor Inhibition of EBNA1-dependent OriP sequence-specific DNA-binding activity. 96 97

 � EBI2 inhibitor, GSK682753A Inhibition of oxysterol-induced EBI2 activation, β-arrestin recruitment and chemotaxis in B lymphocytes. 98 99

 � EBI2 inhibitor, NIBR189 EBI2 inhibition; blocks migration in U937 monocytes. 100

Vitamins

 � Vitamin C Inhibition of EBV activation in human lymphoblastoid cells. Killing of EBV+ Burkitt lymphoma cells and EBV-
transformed cells in vitro.

101–103

 � Vitamin D Direct inhibition of enveloped viruses. Upregulation of antimicrobial peptides LL-37 and human β-defensin. LL-37 may 
disrupt viral envelope.

104–109

 � Retinoic acid Negative regulator of EBV BZLF1 and thus inhibits EBV lytic cycle. Irreversible inhibition of EBV-transformed B 
lymphocytes.

110–113

Dietary constituents and supplements

 � Resveratrol Inhibition of EBV lytic cycle through effects on multiple molecular targets. 114–116

 � Luteolin Inhibition of promoter activity of EBV immediate-early genes, BRLF1 and BZLF1. Reduces genomic instability and 
suppresses tumourigenicity of EBV.

117–124

 � Apigenin Inhibition of EBV BRLF1 and BZLF1 activity. 125

 � Astragalus extract Inhibition of expression of BZLF1, BRLF1 and EA-D during EBV lytic cycle. 126

 � Epigallocatechin-3-gallate Downregulation of LMP1. Inhibition of EBV-induced B-lymphocyte transformation via suppression of RelA acetylation. 127–131

 � Delta-9-tetrahydrocannabinol (THC) THC inhibits replication of γ-herpesviruses. Mechanism not understood. 132

 � L-arginine Suppression of EBV replication through enhancement of iNOS and nitric oxide. 133

 � Sulforaphane Inhibition of transactivation of Rta, but not Zta. 134

 � Curcumin Enhanced apoptosis-mediated inhibition of proliferation of EBV-transformed lymphoblastoid cell line. Inhibition of 
BZLF1 transcription.

135–137

 � Baicalein Inhibition of EBV+ NPC through repression of activity of EBNA1 Q-promoter. 138

 � (+)-Rutamarin Cellular topoisomerase II catalytic inhibitor. 139 140

EAD, early antigen D; EBI2, EBV-induced 2 gene; EBNA1, EBV nuclear antigen 1; EBV, Epstein-Barr virus; HCMV, human cytomegalovirus; NPC, nasopharyngeal carcinoma; iNOS, 
inducible nitric oxide synthase.

First, they prevent the expression of the EBV immediate-early 
gene, BZLF1. JQ1 reduces transcription of BZLF1 through an 
effect on genes controlled by host protein BACH1, and BACH1 
knockdown reduces BZLF1 expression. JQ1 also localises to the 
lytic origin of replication preventing late gene expression. JQ1 
reduces BRD4 recruitment during reactivation to prevent repli-
cation initiation.92 JQ1 preferentially represses EBV+ NPC cells 
partially through repressing c-Myc and is therefore a promising 
therapeutic candidate for advanced NPC.93

Artesunate, best known as an antimalarial drug, is known to 
inhibit herpesvirus replication.94 Artesunate has been shown to 
inhibit EBV replication in both epithelial cells and lymphocytes. 
The mode of action is through a block on viral immediate early 
protein synthesis.95

H31 is a novel small molecule inhibitor of sequence-specific 
DNA binding of EBNA1 to the EBV OriP element.96 The EBV 
OriP is a 1.7 kb region of the EBV chromosome that supports the 

replication and stable maintenance of plasmids in human cells.97 
Replication and persistence of extrachromosomal EBV episome 
in latently infected cells is dependent on the binding of EBV-en-
coded nuclear antigen 1 (EBNA1) to the EBV oriP element. H31 
repressed the EBNA1-dependent transcription, replication and 
persistence of an EBV oriP plasmid. H31 induced progressive 
loss of EBV episome. In addition, H31 selectively retarded the 
growth of EBV-infected lymphoblastoid cell lines or BL cells. 
H31 inhibition of EBNA1-dependent DNA binding decreases 
transcription from and persistence of EBV episome in EBV-in-
fected cells.96

The human GPCR, EBI2, is a key receptor in B cells, T cells 
and DCs, modulating the T and B cell response to bloodborne 
antigens.98 EBI2 is highly upregulated in response to EBV infec-
tion,55 T1DM, RA, SLE, MS, CFS/ME and several cancers.56 57 
There are two EBI2 modulators in development. GSK682753A is 
a small molecule, potent EBI2 antagonist which blocks 7α25HC 
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Figure 1  Schematic diagram showing Epstein-Barr virus (EBV) latency 
with B-cell transformation, and the steps comprising the EBV lytic cycle 
(immediate-early proteins, early proteins, viral genome replication, 
late (structural) proteins and virion production). The role of cytotoxic 
CD8+ lymphocytes is also shown responding to the infection, under 
the influence of Th1 suppressor cells. Numbers 1–8 have been added 
to the diagram to indicate different mechanisms of action of anti-EBV 
drugs, vitamins and nutritional supplements. Number 1, inhibition of 
transcription or function of the immediate-early genes, BZLF1 and 
BRLF1, which represent the first step in the EBV lytic cycle (valpromide, 
artesunate, vitamin C, retinoic acid, luteolin, apigenin, astragalus 
extract, sulforaphane, curcumin, resveratrol). Number 2, inhibition of the 
function of Epstein-Barr nuclear antigen 1 (H31, baicalein). Number 3, 
inhibition of viral DNA replication through either inhibition of cellular 
topoisomerases I and II which are required for EBV genome replication 
((+)-rutamarin) or inhibition of viral DNA polymerase (aciclovir, 
ganciclovir, omaciclovir, cidofovir). Number 4, direct inhibition of the 
EBV protein kinases (maribavir) or envelope (vitamin D). Number 5, 
inhibition of B-cell transformation (epigallocatechin-3-gallate). Number 
6, a cellular antiproliferative effect (retinoic acid, JQ1, cimetidine). 
Number 7, inhibition of the function of the human G-protein coupled 
receptor), EBV-induced gene 2 (GSK682753A, NIBR189). Number 8, 
inhibition of Th1 suppressor cells, resulting in enhanced CD8+ cell 
cytotoxicity (cimetidine).

stimulation of the EBI2 receptor in a recombinant system.99 
NIBR189 is a potent selective antagonist of EBI2, being devel-
oped in particular for cardiovascular disease.100

Vitamins with anti-EBV activity
Higher plasma levels of vitamin C have been correlated with 
lower levels of EBV viral capsid antigen IgM and EA IgG in 
patients with acute and prolonged symptomatic EBV infec-
tion.101 Vitamin C has been shown to kill EBV+ BL cells and 
EBV-transformed B cells in vitro.102 Vitamin C was found to 
abrogate EBV activation in human lymphoblastoid cells.103

Vitamin D deficiency occurs with apparent increased frequency 
in acute IM.104 An inverse correlation was reported between 
vitamin D status and EBV load but not EBNA1 antibody level 
in relapsing, remitting MS (RR-MS).105 High-dose oral vitamin 
D3 supplementation was shown to lower anti-EBNA1 antibody 
level in patients with RR-MS.106 Vitamin D levels which reach 
a nadir during late winter and early spring are correlated with 
increased disease activity, clinical severity as well as relapse rates 
in several autoimmune diseases including MS, non-cutaneous 

flares of SLE, psoriasis and RA.107 The seasonality of infectious 
disease in general is markedly influenced by sunlight and vitamin 
D level, which explain the winter peaks of incidence of symp-
tomatic infection with various respiratory viruses.108 109

Retinoic acid is a metabolite of vitamin A1 (all-trans-retinol) 
which mediates the functions of vitamin A1 that are required for 
growth and development and is required in all higher animals. 
All-trans-retinoic acid binds the retinoic acid receptor (RAR) 
which modifies transcription of different sets of genes depending 
on cell type. Retinoic acid is a negative regulator of EBV BZLF1 
and thus inhibits EBV reactivation.110 Retinoids have also been 
shown to irreversibly inhibit in vitro growth of EBV-transformed 
B lymphocytes,111 through upregulation of the cyclin-dependent 
kinase inhibitor, p27Kip1.112 This antiproliferative effect has 
also been demonstrated in EBV-transformed B cells with an acti-
vated c-Myc oncogene.113

Nutritional supplements with anti-EBV activity
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a type of natural 
phenol called a stilbenoid, and a phytoalexin produced by plants 
as a response to injury or infection. Sources of resveratrol in food 
include the skin of grapes, blueberries, raspberries, mulberries and 
peanuts. Resveratrol prevents EBV transformation and inhibits 
the outgrowth of EBV-transformed B lymphocytes114 and EBV-in-
fected BL cells.115 Resveratrol also inhibits EBV lytic cycle in BL 
cells through effects on multiple molecular targets.116

Luteolin is a flavone with a flavonoid 2-phenylchromen-4-one 
ring structure and has a yellow crystalline appearance. Luteolin 
has also been shown to significantly inhibit EBV reactivation by 
suppressing promoter activities of two immediate early genes, 
BRLF1 and BZLF1.117 It also reduces genomic instability and 
suppresses tumourigenic features induced by repeated EBV reac-
tivation, suggesting that inhibition of EBV reactivation is a novel 
target to prevent NPC relapse.118 Luteolin is an effective free 
radical scavenger and inducer of tumour apoptosis119 and has been 
shown to have valuable anticancer effects.120 It is antiangiogenic, 
antimetastatic, anti-inflammatory and antioestrogenic, and regu-
lates many signalling pathways.121 122 Luteolin has been shown to 
have profound antiviral properties.123 124 Natural sources include 
celery, broccoli, green pepper, parsley, thyme, dandelion, perilla, 
chamomile, carrots, olive oil, peppermint, rosemary, navel oranges 
and oregano.

Apigenin (4′,5,7-trihydroxyflavone) is a natural product of 
many plants. It has a yellow crystalline appearance and has been 
used to dye wool. Apigenin inhibits EBV reactivation through 
suppression of the activities of two immediate early EBV genes, 
BRLF1 and BZLF1.125 It is also a potent inhibitor of the enzyme 
CYP2C9, which metabolises many drugs in the body. It also acti-
vates monoamine transporters, is a weak anxiolytic and sedative, 
is a non-selective antagonist of all three opioid receptors, and may 
have an important pharmacological effect on the endocannabinoid 
system.125 Potential health benefits are stimulation of generation of 
neuronal cells, prevention of amyloid-β deposition and anticancer 
activity, related to its ability to suppress EBV reactivation.

Polysaccharide extract of the Chinese herb, Astragalus membra-
naceus, was shown to inhibit EBV reactivation in EBV-infected Raji 
cells in vitro. Astragalus polysaccharide extract in a non-cytotoxic 
concentration of 30 µg/mL significantly suppressed the expression 
of BZLF1, BRLF1 and EA-D during the EBV lytic cycle and is 
potentially useful as an anti-EBV drug.126

Epigallocatechin-3-gallate (EGCG) is one of the green tea 
polyphenols and has been shown to inhibit EBV replication127 
through ERK1/2 and PI3K/Akt signalling in EBV+ cells,128 also 
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involving downregulation of LMP1.129 EGCG also inhibits EBV 
LMP1-induced activation of nuclear factor-κB signal transduction 
pathways.130 EGCG has been shown to be a histone acetyltrans-
ferase inhibitor and inhibits EBV-induced B-cell transformation via 
suppression of RelA acetylation.131

Delta-9-tetrahydrocannabinol (Δ−9-THC) was shown to specif-
ically target viral and/or cellular mechanisms required for replica-
tion of CMV and EBV, suggesting that the endocannabinoid system 
is possibly involved in regulating gamma herpesvirus latency and 
lytic replication. The immediate early gene ORF50 promoter 
activity was specifically inhibited by THC.132

L-arginine supplementation inhibited EBV replication in 
EBV+ cells through enhanced inducible nitric oxide synthase and 
increased nitric oxide generation. The expression of EBV EA, 
immediate-early BZLF1 mRNA and ZEBRA protein, and produc-
tion of infectious virus were reduced by L-arginine supplementa-
tion in a dose-dependent manner.133

Sulforaphane is an isothiocyanate compound found in cruci-
ferous vegetables (broccoli, brussel sprouts and cabbage). It is 
produced when the enzyme myrosinase transforms glucoraphanin, 
a glucosinolate, into sulforaphane on damage to the plant (such as 
from chewing), which allows the two compounds to mix and react. 
Sulforaphane has been shown to inhibit EBV reactivation in NPC 
cells, through inhibition of transactivation activity of the immedi-
ate-early EBV gene, BRLF1, but not BZLF1.134

Curcumin, a phenolic extract of the spice turmeric, has been 
used as a food additive for centuries and has potent anti-inflam-
matory, antivirus and antitumour properties. Curcumin has been 
shown to block EBV-induced B-cell immortalisation in a dose-de-
pendent fashion with nearly complete inhibition at 20 µM.135 The 
mechanism of action is enhancement of apoptosis.136 Curcumin 
has also been shown to be an inhibitor of EBV BZLF1 in Raji 
DR-LUC cells.137

Baicalein is a bioactive flavonoid compound purified from 
the root of Scutellariae baicalensis (the flowering plant, Baikal 
skullcap), Scutellaria lateriflora (the flowering plant, blue skullcap), 
Oroxylum indicum (Indian trumpet flower) and thyme. It exhibits 
anti-inflammatory, immunosuppressive and antitumour properties. 
Baicalein inhibits the growth of EBV+ NPC cells by repressing the 
activity of the EBNA1 Q-promoter.138

(+)-Rutamarin is a topoisomerase II catalytic inhibitor which has 
been shown to inhibit the replication of EBV. It is obtained from the 
Ruta graveolens (Rue) plant. Herpesviruses require several cellular 
proteins for their lytic DNA replication including topoisomerase II. 
(+)-Rutamarin is effective in inhibiting EBV DNA replication and 
virion production with little adverse effect on cell proliferation, 
and therefore has potential to become a safe and effective drug for 
the treatment of human diseases associated with EBV infection.139 
A variety of rutamarin derivatives also exhibit similar inhibition of 
EBV replication.140

Conclusions
EBV is a hugely successful pathogen which infects almost all people 
globally, and which persists lifelong following the acute phase. 
EBV reactivation is induced by chronic psychological stress with 
consequent weakening of the cellular immune response and is 
an important mechanism in the pathogenesis of various autoim-
mune diseases, cancers and CFS/ME. This article documents the 
anti-EBV activity of anti-herpesvirus drugs, other drugs and various 
dietary constituents and supplements. There are no drugs currently 
licensed for the treatment of EBV reactivation, although there are 
a number of anti-EBV drugs in development. It is interesting to 
note that there are numerous dietary constituents and supplements 

with effective anti-EBV activity, demonstrating the importance of 
a nutritious diet and a healthy lifestyle in the prevention of EBV 
reactivation.

Take home messages

►► Epstein-Barr virus (EBV) infection infects almost everyone in 
all populations studied.

►► EBV persists life-long following acute infection and is 
reactivated with prolonged psychological stress which 
weakens cellular immunity.

►► EBV reactivation has been associated with various 
autoimmune diseases, chronic fatigue syndrome / myalgic 
encephalomyelitis (CFS/ME) and various malignancies.

►► Various drugs, vitamins and nutritional supplements inhibit 
EBV reactivation and several other critical points in the EBV 
life cycle.

►► A nutritious diet containing sufficient vitamins A, C and D is 
important in the control of EBV infection and prevention of 
disease.
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